APPENDIX 2

List of parameters used in SPIRALL. Ksh is Kenyan Shillings

SPIRALL PARAMETERS	VALUE
Adult Equivalents ¹	0.52 (<5); 0.85 (6-12); 0.96 (13-17 males); 0.96 (13-17 females); 1 (>17 males); 0.86 (>17 females)
Calorie needs for above age-sex classes (kcal/day) ¹	1720; 1720; 1943; 1943; 2024; 1943
Cattle male:female ratio ²	43/57
Camel male:female ratio ²	33/67
Sheep male:female ratio ²	13/87
Goat male:female ratio ²	26/74
Cattle max age; weaning age ²	13 years; 9 months
Camel max age; weaning age ²	25 years; 7 months
Sheep max age; weaning age ²	5 years; 2 months
Goat max age; weaning age ²	5 years; 2 months
Monthly death rate - Cattle calf ²	0.029
Monthly death rate - Camel calf ²	0.029
Monthly death rate - Kids ²	0.018
Monthly death rate - Lambs ²	0.029
Expected weight (kg) at age (months) - Cattle ³	250 * (1 – exp (-350 * 0.017 * n /120))
Expected weight (kg) at age (months) - Goat ³	34 * (1 – exp (-34 * 0.02 * n /6))
Expected weight (kg) at age (months) - Sheep ³	34 * (1 – exp (-34 * 0.02 * n /6))
Expected weight (kg) at age (months) - Camel ³	450 * (1 – exp (-350 * 0.00018 * n /1.6)) (GreenHerb, DeadHerb, GreenShrub, DeadShrub, ShrubBranch, GreenTree, DeadTree,
Relative biomass pool preference****	TreeBranch)
Cattle	0.8; 0.16; 0.03; 0.01; 0; 0; 0; 0
Sheep	0.45; 0.22; 0.19; 0.09; 0; 0.03; 0.02; 0
Goat	0.23; 0.12; 0.17; 0.08; 0.02; 0.24; 0.12; 0.02

Camel

Camel	0.03; 0.02; 0.45; 0.23; 0.05; 0.14; 0.07; 0.01
Maintenance Energy requirements -Cattle (MJ) ³	0.48 * (BW ^ 0.75)
Maintenance Energy requirements -Camel (MJ) ⁴	0.314 * (BW ^ 0.75)
Maintenance Energy requirements -Sheep (MJ) ⁵	0.25 * (BW ^ 0.75)
Maintenance Energy requirements -Goat (MJ) ⁶	0.3 * (BW ^ 0.75)
Livestock breeding month	All species reproduce in April and November
Fraction reproducing in April and November*	
Cattle	0.5, 0.2
Camel	0.4, 0.1
Sheep	0.7, 0.3
Goat	0.7, 0.3
Cattle milk production months ³	April – August; Nov - Mar
Camel milk production months ³	January - December
Shoat milk production months ³	April – May ; Nov - Dec
Cattle Milk Production (kg /lactating individual /month) ¹	0;0;0;45;46.5;24.8;24;24;0;0;0;0
Camel Milk Production (kg /lactating individual	0,0,0,45,40.5,24.8,24,24,0,0,0,0
/month) ⁷	15;15;15;51;51;51;45;45;36;36;36
Shoat Milk Production (kg /lactating individual /month) ⁷	0;0;0;5;5;0;0;0;0;0;0;0;0
Maize harvest month ¹	July
Milk calories - Cattle ¹	789 kcal / kg
Milk calories – Camel ⁸	700 kcal / kg
Milk calories - Sheep / Goat ¹	530 kcal / kg
Opportunistic Slaughter Probability	0.05
Meat calories ¹	1720 kcal / kg
Maize calories ¹	3700 kcal / kg

Cost per kcal maize**	0.013 Kenyan Shillings
Monthly sale price of cattle and camel (Ksh) ³	5889; 5818; 6798; 6679; 7721; 6924; 6403; 6254; 6743; 6790; 6939
Monthly sale price of sheep and goat (Ksh) ³	1212; 1179; 1198; 1160; 1213; 1217; 1167; 1187; 1149; 1232; 1326; 1383
Max monthly food expenses (Ksh)	AE * 750
Monthly Veterinary expenses (Ksh) ⁹	Livestock holdings as TLU * 25
Monthly General Expenses (Ksh)	Number of household members * 100
Herb forage energy - Cattle***	7 MJ / kg
Herb forage energy - Sheep***	7 MJ / kg
Browse forage energy- Camel***	5 MJ / kg
Browse forage energy- Goat***	8 MJ / kg

* Only a small fraction of individuals reproduce during the short-wet season. Reproductive rates are set based on approximate inter-birth intervals for each species.

** Cost of purchasing 1kcal of energy from the store was estimated by assuming the cost of 1 kg maize to be 49 Ksh

*** The maximum monthly weight gain possible for each livestock species on an ad-lib diet was used to estimate the energy content of forage. For example, energy contained within a unit of herb forage is set such that cattle feeding at the maximum possible daily rate can gain 15 kg each month.

**** Relative preference for each biomass pool shown by each livestock species was calculated based on the fraction of these pools reported in their diets (Coppock et al. 1986).

References

- Boone, R. B., K. A. Galvin, S. B. BurnSilver, P. K. Thornton, D. S. Ojima, and J. R. Jawson. 2011. Using Coupled Simulation Models to Link Pastoral Decision Making and Ecosystem Services. Ecology and Society 16:art6.
- 2. Hjort, G., and A. Dahl. 1976. Having Herds : Pastoral Herd growth and Household Economy. Department of Social Anthropology, University of Sotckholm.
- 3. Otte, M., and P. Chilonda. 2002. Cattle and small ruminant production systems in sub-Saharan Africa A systematic review. Food and Agricultural Organization of the United Nations, Rome.
- 4. Guerouali, A., and M. F. Wardeh. 1998. Assessing Nutrient Requirements and limits to Production of the Camel under its Simulated Natural Environment.
- 5. Nie, H. T., Y. J. Wan, J. H. You, Z. Y. Wang, S. Lan, Y. X. Fan, and F. Wang. 2015. Effect of age on energy requirement for maintenance and growth of Dorper and Hu crossbred F1 ewes weighing 20 to 50 kg. Asian-Australasian Journal of Animal Sciences 28:1140–1149.
- 6. Abate, A. 1989. Metabolizable energy requirements for maintenance of Kenyan goats. Small Ruminant Research 2:299–306.
- 7. McCabe, J. T. 2011. Cattle bring us to our enemies. Fifth edition. The University of Michigan Press, USA.
- Morton, R. H. 1984. Camels for Meat and Milk Production in Sub-Sahara Africa. Journal of Dairy Science 67:1548–1553
- 9. Thornton, P., K. A. Galvin, and R. Boone. 2003. An agro-pastoral household model for the rangelands of East Africa. Agricultural Systems 76:601–622
- Cppock, D.L., J.E. Ellis, and D.M. swift. 1986. Livestock feeding ecology and resorce utilization in a noamdic pastoral ecosystem.